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Abstract 

The prediction of ship motion characteristics early in the design 

stage in realistic sea conditions are of vital importance for the 

ship designer. Strip theories are commonly used for this purpose 

as they are fast and inexpensive. In this paper, an existing two-

dimensional time-domain strip theory optimised for multi-hull 

vessels travelling at high Froude numbers is extended to predict 

motions in an irregular seaway. The encountered wave 

environment is represented by the superposition of regular 

sinusoidal waves. A method for decomposing idealised sea 

spectra into component regular waves of varying frequencies and 

constant amplitudes is presented. Ship motion predictions in 

irregular waves are then verified by conducting a spectral 

analysis on the motions and wave environment and comparing 

with motion predictions in regular waves. A method of ensemble 

averaging of spectra over a series of runs is adopted to reduce 

spectral variance. The extended seakeeping method is then 

validated by comparing predicted motions of a large high-speed 

catamaran in irregular seas with scale model results from towing 

tank experiments. 

Introduction 

Accurate prediction of the motion characteristics of a vessel early 

in the design spiral is vital for a successful design. Potential flow 

strip theory methods are commonly used for this purpose as they 

are fast and inexpensive in computational requirements. This 

paper presents an irregular wave extension to a time-domain 

method, giving ship designers the ability to predict vessel 

motions in realistic irregular seas numerically. 

A two-dimensional time-domain strip theory optimised for high 

Froude numbers is used to predict vessel motions. The algorithm 

was originally developed to predict motions in regular waves, 

and then extended to predict global wave loads. The work 

presented here is a further expansion of this method to model 

motions in irregular seas. 

There are many motion prediction methods available to the ship 

designer, each with the same goal but varying in approach. 

However, all motion prediction methods must simplify the 

problem by making limiting assumptions, and this is particularly 

evident when predicting motions of high-speed catamarans. 

The seakeeping theory described above forms the basis of the 

motion and global load prediction tool and has been extended for 

irregular wave applications. The irregular wave version of the 

time-domain seakeeping method optimised for high Froude 

numbers is verified in this work by performing a series of 

program tests and validated by comparing scale model 

experiment results from towing tank tests with the predicted 

motions and wave spectra produced by the seakeeping program.   

 

Time-Domain Strip Theory Description 

A two-dimensional time-domain strip theory capable of 

predicting motions and global wave loads of large high-speed 

catamarans in regular waves has been developed at the 

University of Tasmania [1]. It is based on the transient Green 

function solution for strips of water which are fixed in space and 

perpendicular to the direction of motion. The solution for each 

strip starts when the bow enters the strip, and finishes when the 

stern leaves the strip. The Green function used satisfies the 

linearised free surface boundary condition; therefore if the water 

depth is considered to be deep, it is only necessary to place 

sources on the hull surface. This has the advantage of reducing 

the number of sources (and thus number of computations) 

required for a solution [1]. 

Large amplitude motions and irregular incident waves can be 

simulated realistically with this model because the hull is 

panelled up to the instantaneous incident wave free surface at 

each time step. This requires the sources to be redistributed on 

the wetted hull surface at each time step. It is important to 

remember that the Green function linearises the free surface 

boundary condition, so any non-linear effects resulting from 

large motions of the free surface are not modelled. The Green 

function solution determines the local pressures on each hull 

surface panel and the total force on the hull is found by 

integrating over the hull surface at each time step. The hull is 

then treated as a rigid body and instantaneous accelerations in 

heave, pitch, roll, yaw and sway are determined. It is then 

possible to integrate the accelerations to determine the motion of 

the vessel through time [2]. 

Davis and Holloway [3] compiled a comprehensive study 

validating this code for 14 different hull forms against towing 

tank data for conventional slender hulls suitable for high speed 

catamarans, monohulls, SWATH (small water area twin hull) and 

semi-SWATH hull forms. Motions of an NPL 5b catamaran 

model were also satisfactorily predicted in oblique seas in a 

separate investigation [4]. Peak magnitudes of the response 

amplitude operators (RAOs) were found to be particularly 

sensitive to damping effects. Therefore the empirical vertical 

damping force per section equation was introduced:  

 
   

 

 
       (1) 

where D is the vertical force per unit length, Cs is the vertical 

damping force coefficient, ρ is density, B is the sectional beam, U 

is the forward speed of the ship and v is the vertical velocity of 

the section relative to local water surface.  

Increase of this damping coefficient can significantly reduce the 

peak responses of the heave RAO, with smaller reductions in 

pitch RAO. However, it does little to shift the resonant peak in 



frequency. The values for    vary, but are less than 0.15 and 

commonly of the order of 10-2 for simple geometries [3]. 

Prediction of Motions in Irregular Seas 

In order to simulate realistic seakeeping scenarios, the method 

should be able to predict motions in an irregular seaway. Because 

this method is formulated in the time-domain and instantaneous 

wave heights are determined at all strips of water and at each 

time step, it is possible to use the principle of linear superposition 

of regular waves to create an irregular wave field. This assumes 

that nonlinear interactions of regular waves are negligible. An 

array of wave heights, frequencies, phases and headings are 

required in this method. Surface displacements, velocities and 

Froude-Krylov forces are calculated for each regular wave 

component at each water section and then summed to give the 

total surface displacement, velocity and Froude-Krylov forces. 

Incident Irregular Wave Definition 

The potential function for the jth regular wave component is: 
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Hw is the wave height,    and k0 are the angular wave frequency 

and wave number respectively, t is time and x and z are spatial 

distances. Linear superposition of individual wave components is 

used to obtain the total potential function for the irregular wave: 
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for n regular waves.  

The wave elevation associated with the jth wave component is:  
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Total wave elevation is simply the sum of these components (η = 

∑ ηj ). 

The hydrodynamic component of pressure head and vertical 

velocity can now be determined: 
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Assuming deep water (depth > 0.5 wave length), the right hand 

side of equation (5) can be shown to be: 
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where   is the wave elevation. The component of vertical 

velocity, w, is defined as the change in potential over the change 

in vertical distance (  
  

  
 ) and is shown by equation (7): 
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Equations (2) through to (7) assume that the waves are travelling 

in the -x direction. However these equations can be further 

generalised to represent any heading by replacing x by 

                   . Each wave component can also be given a 

different phase by simply including phase angle γ in the      
      term. 

 

 

Simulating Idealised Wave Energy Spectra 

Any wave spectrum can be represented by a series of regular 

waves of varying frequency and amplitude depending on the 

energy distribution of the wave spectrum. The average energy 
  ̅  over a wavelength is given by equation (8): 

 
 ̅  
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where  is defined as the wave amplitude. Figure 1 shows a wave 

energy spectrum that has been divided into a number of bands. 

The solid lines represent the boundaries of the frequency bands 

and the dotted lines show the mid-point, each band is represented 

by one regular wave. The nth regular wave component of the 

spectrum can be found by applying equation (9), where the 

frequency of the regular wave is the mid-point and its amplitude 

represents the average energy over the frequency band. 
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  ̅

  
 (9) 

 

Figure 1: A JONSWAP wave spectrum illustrating the constant energy 

method of separating the spectrum into a series of regular waves. The 

dashed lines and points show the mid-point of each energy band, a 
regular wave of this frequency represents the energy within the associated 

band (H1/3 = 2.24m, T0 = 8s). 

In order to avoid repetition of the wave pattern in time, the wave 

spectrum is not divided by a constant frequency but rather by 

constant amplitude. Each wave component represents a constant 

amount of energy in the spectrum; therefore in regions of little 

energy, the frequency spacing between wave components is 

greater than at the energy peak where the regular wave 

components are more concentrated. This can be seen in Figure 1, 

each frequency band represents the same amount of energy (and 

thus area under the curve). The spectrum shown in the above 

figure divided into fifty waves for clarity, in the simulations 

presented here, the wave spectra are divided into five hundred 

regular wave components. 

Ship Motions in Irregular Waves 

Response amplitude operators are determined for heave and pitch 

as a means of verifying the method. In the case of regular waves, 

the maximum motion response is divided by the wave height (or 

slope in the case of pitch) to determine the dimensionless 

response amplitude for the given wave frequency. In the more 

complicated case of motions in a wave spectrum, this is done by 

calculating the encountered wave spectrum from time domain 

measurements of the encountered wave elevation (or wave slope) 

and the motion spectrum from the response of the vessel, via a 

Fourier analysis. The discrete Fourier transform is used to 

determine the motion and wave spectra and the ratio of these 

spectra provides the RAO for that particular condition.  

The motion RAO for heave is given as the square root of the ratio 

of the heave spectrum,      
    , to the measured encountered 

wave elevation spectrum,        and similarly the pitch RAO is 



given as the square root of the ratio of the encountered pitch 

spectrum,     
      to the wave slope spectrum,       : 
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Here, x30 and x50 are heave and pitch motions respectively. 

Variances in the motions and wave spectra were reduced by 

applying Bartlett's method of ensemble averaging, as shown by 

equation (12). Instead of separating the runs into K segments 

before applying the Fourier analysis, each run was considered 

individually and the resulting spectra for all K runs in the 

condition were averaged. Bartlett's method was also applied to 

the time domain simulation data; a series of K = 20 runs were 

conducted and ensemble averaging smoothed the resulting 

spectrum.  
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To ensure that the same wave train was not encountered twice, a 

random phase was applied to each regular wave component when 

constructing the irregular was spectrum in the time domain, 

before it was input into the seakeeping program. 

Verification 

A series of system tests were devised to verify the operation of 

the extended seakeeping code. These tests ranged from simple 

checks such as observing motions in extremely long waves and 

comparing motions in a single regular wave with that of the same 

wave composed of two wave components of identical frequency 

to developing an operating strategy regarding simulating 

idealised sea spectra that make up the irregular spectrum.  

Comparisons between motion response in regular waves and 

irregular waves were examined as a verification exercise. The 

motion response of the vessel in an irregular wave spectrum 

cannot be directly compared to regular sea results, due to 

variances in the significant wave heights and frequencies of the 

encountered waves in the spectrum (particularly if the vessel hull 

form results in nonlinear motions at larger wave heights). 

However the vessel response should fall within the ‘envelope’ of 

regular wave RAOs for different wave heights.  

Figure 2 shows the predicted RAOs for a 112m high-speed wave-

piercing catamaran sailing at 38kts in regular waves of varying 

frequency and wave heights with the motions in an irregular 

JONSWAP spectrum (H1/3 = 2m, T0 = 10s). The encounter 

frequency, shown as the abscissa in Figure 2, has been made non-

dimensional by multiplying the encounter frequency by the 

square root of the ship length, L, divided by the gravitational 

constant, g, as shown by equation (13). Frictional effects such as 

viscosity have been neglected in these results.  
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The time-domain method is capable of capturing nonlinear 

behaviour as seen in the RAOs from regular waves, with decay in 

non-dimensional response (heave or pitch) observed around the 

peak motion response with increasing wave height. The motion 

response of the vessel in a 2m JONSWAP spectrum falls within 

the envelope of regular wave RAOs for wave heights of 1 and 

2m, providing confidence in the irregular wave methodology. 

 

 

Figure 2: Numerical heave RAOs for a 112m wave-piercing catamaran. 

1m, 2m and 3m regular waves (U = 38kts) compared with the response 

from a JONSWAP wave spectrum (H1/3 = 2.0m, T0 = 10s, U = 38kts). 

Validation 

Validation of the seakeeping code is primarily carried out by 

comparing predicted motion from the seakeeping code against 

scale model towing tank test results. In place of attempting to 

recreate the scale model test environment exactly in the 

computational domain (i.e. match time histories of wave 

elevations with the scale model experiments) a statistical 

approach was taken and a series of wave systems representative 

of each condition tested was developed using the method 

outlined previously. Twenty of these systems were constructed 

and ship motions were predicted using the irregular wave 

seakeeping method for each one. A Fourier analysis on wave 

elevation and ship motion time traces were conducted using 

Bartlett's method of ensemble averaging over the twenty runs 

representing each test condition. The resulting encountered wave 

elevation and slope spectra were compared with those measured 

experimentally from the scale model testing. Predicted heave and 

pitch spectra were divided by the respective wave elevation or 

slope spectra to obtain RAOs and these were also compared with 

experimental results.    

A 2.5m scale model of a 112m high-speed wave-piercing 

catamaran was tested in irregular waves in a towing tank to 

validate the irregular seakeeping code. This catamaran contains a 

centre bow: a small third hull located between the demihulls on 

the bow of the vessel to provide extra buoyancy in the event of 

excessive motions of the bow. This bow was modelled as a short 

third hull in the numerical method. 

Relatively mild sea conditions were selected in order to minimise 

non-linearties associated with large motions, such as wetdeck 

slamming. A JONSWAP wave spectrum was chosen with a 

significant wave height of 1.12m (25mm model scale) and modal 

period of 8s (1.2s model scale). 

Encountered wave elevations and slope spectra from the model 

experiments and the seakeeping prediction code were compared 

with the ideal spectra to ensure that a viable comparison could be 

made between experimental and numerically predicted motions. 

Figure 3 shows the encountered wave elevation spectrum for the 

tested condition. The dot-dashed line is the spectrum produced 

from the seakeeping prediction while the dashed line represents 

the spectrum measured during experiments. Good correlation can 

be seen between the ideal and measured spectra, allowing viable 

comparisons between predicted and experimentally measured 

ship motions.  

 



 

Figure 3: Encountered wave spectra (numerical and measured) compared 

with the ideal for a JONSWAP spectrum (H1/3 = 1.12m, T0 = 8s, U = 

38kts, (25mm, 1.2s, 2.98m/s model scale)). 

Figure 4 and Figure 5 compare the heave and pitch RAOs 

respectively. Since strip theories inherently ignore viscous 

effects, a vertical damping force coefficient of 0.08 is introduced 

to model vertical damping (see equation (1)).  The peak heave 

RAO magnitude matches well with experimental results. 

However, there is a discrepancy between the predicted and 

measured motion frequency, both predicted heave and pitch 

RAOs appear to be ‘shifted’ to the right by approximately an 

increment of 0.8 in    
 . This has also been observed when 

comparing full scale wave-piercing catamaran motions data with 

the simulation [5]. A number of possible causes of this mismatch 

were identified, ranging from the action of the centre bow to the 

added mass calculations at the transom stern. The irregular wave 

analysis method was not found to be the cause of this problem as 

the frequency offset in peak motions was also present in regular 

wave solutions. However, the frequency offset is not prevalent 

for simple hull forms (such as the NPL hulls presented by Davis 

and Holloway [3]), suggesting that some features of the more 

complicated wave-piercing catamaran hull form are not being 

modelled correctly in the simulation. In particular the potential 

flow solution does not represent separation at hard chines in the 

wave-piercing catamaran hull form near the stern which are 

likely to increase sectional added water mass effects. 

 

Figure 4: Comparison between experimental and predicted heave RAOs 
(H1/3 = 1.12m, T0 = 8s, U = 38kts, (25mm, 1.2s, 2.98m/s model scale)). 

 

 

Figure 5: Comparison between experimental and predicted pitch RAOs 

(H1/3 = 1.12m, T0 = 8s, U = 38kts, (25mm, 1.2s, 2.98m/s model scale)). 

Conclusions 

A time-domain strip theory optimised for high speed multi-hull 

seakeeping was extended for the purpose of predicting motions 

and loads in an irregular seaway. A method for representing 

idealised wave spectra as a series of regular sinusoidal waves 

with identical amplitudes, random phases, and frequencies 

dependent on the energy distribution of the wave spectrum was 

developed as an input to the extended seakeeping method.  

The method was verified by conducting a series of tests to ensure 

that the extension to the existing code was successful and then 

the method was partially validated by comparing seakeeping 

predictions with scale model experiments in a JONSWAP 

spectrum. Whilst the method is capable of modelling the non-

linear motion response with changing significant wave height, a 

persistent offset in peak response frequency is present and 

requires further investigation, in particular the effect of hard 

chines in the ship sections.  
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